# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-[(4-Bromophenyl)(4-fluorophenylamino)methyl]cyclohexanone

#### Guang-Xin Yuan,<sup>a</sup>\* Jing-Bo Sun,<sup>a</sup> Li-Hua Zhang<sup>a</sup> and Gang Lu<sup>b</sup>

<sup>a</sup>Beihua University Pharmaceutical College, Jilin 132013, People's Republic of China, and <sup>b</sup>Beihua University Analytical and Testing Center, Jilin 132013, People's Republic of China

Correspondence e-mail: yuanguangxin2007@163.com

Received 16 July 2007; accepted 27 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.113; data-to-parameter ratio = 14.7.

In the crystal structure of the title compound,  $C_{19}H_{19}BrFNO$ , molecules are connected into dimers *via* intermolecular N– H···O hydrogen bonding. The dihedral angle between the two benzene rings is 74.84 (1)°. The cyclohexane ring has the usual chair conformation.

#### **Related literature**

For related literature, see: Shou et al. (2006).



## Experimental

#### Crystal data

 $C_{19}H_{19}BrFNO$   $V = 1725.6 (3) Å^3$ 
 $M_r = 376.26$  Z = 4 

 Monoclinic,  $P2_1/n$  Mo  $K\alpha$  radiation

 a = 12.6501 (14) Å  $\mu = 2.40 \text{ mm}^{-1}$  

 b = 8.2310 (9) Å T = 295 (2) K 

 c = 17.0111 (18) Å  $0.37 \times 0.31 \times 0.17 \text{ mm}$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{min} = 0.450, T_{max} = 0.660$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.048$ | 208 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.113$               | H-atom parameters constrained                              |
| S = 0.82                        | $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$  |
| 3060 reflections                | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

8450 measured reflections

 $R_{\rm int} = 0.120$ 

3060 independent reflections

1669 reflections with  $I > 2\sigma(I)$ 

#### Table 1

#### Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$  $D\cdots A$  $D-H\cdots A$  $N1-H1\cdots O1^i$ 0.812.192.978 (4)166Summary description of D111

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2047).

#### References

Bruker (1998). *SMART* (Version 5.051) and *SAINT* (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shou, W.-G., Yang, Y.-Y. & Wang, Y.-G. (2006). *Tetrahedron Lett.* 47, 1845–1847.

supplementary materials

Acta Cryst. (2007). E63, o3960 [doi:10.1107/S1600536807036847]

### 2-[(4-Bromophenyl)(4-fluorophenylamino)methyl]cyclohexanone

### G.-X. Yuan, J.-B. Sun, L.-H. Zhang and G. Lu

#### Comment

 $\beta$ -Amino carbonyl moieties are found as structural units of a number of biologically active natural products. As a part of a project on the synthesis of such compounds the crystal structure analysis was performed. In the crystal structure of the title compound (I) the dihedral angle between the phenyl rings C8—C13 and C14—C19 is 74.84 (1)°. The six-membered ring (C1—C6) is in a chair conformation. A pair of weak intermolecular N—H…O hydrogen bonds link the molecules into dimers (Fig.1 and Table 1).

#### **Experimental**

The starting materials were purchased from Acros and used without purification. The title compound (I) was synthesized according to the method described previously (Shou *et al.*, 2006). IR (KBr,cm<sup>-1</sup>): 1705, 1598, 1515, 1489, 1256. <sup>1</sup>H NMR (500 MHz,  $\delta$  in p.p.m., CDCl<sub>3</sub>): 7.43–7.40 (m, 2H), 7.25–7.22 (m, 2H), 6.78–6.74 (m, 2H), 6.44–6.41 (m, 2H), 4.75 (s, br, 1H), 4.49 (d, J = 6.6 Hz, 1H), 2.72–2.70 (m, 1H), 2.42–2.39 (m, 1H), 2.34–2.31 (m, 1H), 1.98–1.89 (m, 2H), 1.88–1.85 (m, 1H), 1.75–1.63 (m, 3H). <sup>13</sup>C NMR (125 MHz,  $\delta$  in p.p.m., CDCl<sub>3</sub>): 212.7, 157.1 (d, J<sub>C—F</sub> = 234.4 Hz), 143.5, 140.8, 131.8, 129.3, 121.2, 115.7 (d, J<sub>C—F</sub> = 22.5 Hz), 114.9 (d, J<sub>C—F</sub> = 7.5 Hz), 58.7, 57.4, 42.4, 31.8, 28.1, 24.3. Melting point: 386–387 K. MS (ESI): m/z 399 ([*M*+Na]<sup>+</sup>). Calculated for C<sub>19</sub>H<sub>19</sub>BrFNO: C 60.65, H 5.09, N 3.72%; found: C 60.70, H 5.12, N 3.70%. The crystal used for the data collection was obtained by slow evaporation of the solvent from a saturated hexane-dichloromethane solution of I at room temperature.

#### Refinement

The N—H H atom was located in the difference map, fixed at this position and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(N)$ . The C—H H atoms were placed in calculated positions, with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.98Å (methine) and were refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

## Figures



Fig. 1. View of the dimers in the crystal structure of compound I with labeling and displacement ellipsoids drawn at the 50% probability level (Hydrogen bonding is shown as dashed lines. Symmetry code: i) 1 - x, 1 - y, 1 - z.

#### 2-[(4-Bromophenyl)(4-fluorophenylamino)methyl]cyclohexanone

| Crystal data                          |                                              |
|---------------------------------------|----------------------------------------------|
| C <sub>19</sub> H <sub>19</sub> BrFNO | $F_{000} = 768$                              |
| $M_r = 376.26$                        | $D_{\rm x} = 1.448 {\rm Mg m}^{-3}$          |
| Monoclinic, $P2_1/n$                  | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                   | Cell parameters from 1759 reflections        |
| <i>a</i> = 12.6501 (14) Å             | $\theta = 4.5 - 41.2^{\circ}$                |
| <i>b</i> = 8.2310 (9) Å               | $\mu = 2.40 \text{ mm}^{-1}$                 |
| c = 17.0111 (18)  Å                   | T = 295 (2)  K                               |
| $\beta = 103.031 \ (2)^{\circ}$       | Prismatic, colorless                         |
| $V = 1725.6 (3) \text{ Å}^3$          | $0.37\times0.31\times0.17~mm$                |
| Z = 4                                 |                                              |

#### Data collection

| Bruker SMART CCD area-detector<br>diffractometer               | 3060 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1669 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.120$                  |
| T = 295(2)  K                                                  | $\theta_{max} = 25.1^{\circ}$          |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -8 \rightarrow 15$                |
| $T_{\min} = 0.450, \ T_{\max} = 0.660$                         | $k = -9 \rightarrow 9$                 |
| 8450 measured reflections                                      | $l = -20 \rightarrow 20$               |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map     |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites |
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | H-atom parameters constrained                            |

| $wR(F^2) = 0.113$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0443P)^2]$<br>where $P = (F_o^2 + 2F_o^2)/3$ |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| <i>S</i> = 0.82                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 3060 reflections                                       | $\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$                     |
| 208 parameters                                         | $\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$                    |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                               |

methods Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

| F 1        |        | 1.          | 1   | • ,     |         | . 1        |           | . 1.   | 1 ,         |            | 182      | 2  |
|------------|--------|-------------|-----|---------|---------|------------|-----------|--------|-------------|------------|----------|----|
| Fractional | atomic | coordinates | and | isotroi | nc or i | 2auivalent | t isotroi | nc dis | nlacement   | narameters | $(A^{-}$ | 17 |
| 1          |        |             |     | 1001.00 |         |            | 1001.01   |        | proceentern |            | (        | /  |

|     | x           | у            | z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|--------------|--------------|---------------------------|
| Br1 | 0.04416 (4) | -0.08221 (6) | 0.22974 (3)  | 0.0824 (2)                |
| F1  | 0.4047 (2)  | -0.0544 (3)  | 0.82439 (15) | 0.1046 (10)               |
| N1  | 0.3694 (2)  | 0.3266 (4)   | 0.55354 (17) | 0.0530 (8)                |
| H1  | 0.4227      | 0.3337       | 0.5347       | 0.064*                    |
| 01  | 0.4507 (2)  | 0.7010 (3)   | 0.53240 (16) | 0.0698 (8)                |
| C1  | 0.3566 (3)  | 0.6596 (5)   | 0.5257 (2)   | 0.0497 (9)                |
| C2  | 0.2870 (3)  | 0.7350 (5)   | 0.5766 (2)   | 0.0626 (11)               |
| H2A | 0.3290      | 0.8137       | 0.6132       | 0.075*                    |
| H2B | 0.2620      | 0.6518       | 0.6085       | 0.075*                    |
| C3  | 0.1896 (3)  | 0.8187 (6)   | 0.5221 (3)   | 0.0732 (12)               |
| H3A | 0.1414      | 0.8591       | 0.5547       | 0.088*                    |
| H3B | 0.2145      | 0.9108       | 0.4956       | 0.088*                    |
| C4  | 0.1277 (3)  | 0.7028 (5)   | 0.4588 (3)   | 0.0693 (12)               |
| H4A | 0.0967      | 0.6162       | 0.4851       | 0.083*                    |
| H4B | 0.0687      | 0.7605       | 0.4236       | 0.083*                    |
| C5  | 0.2005 (3)  | 0.6311 (5)   | 0.4095 (2)   | 0.0630 (11)               |
| H5A | 0.2255      | 0.7171       | 0.3791       | 0.076*                    |
| H5B | 0.1592      | 0.5547       | 0.3711       | 0.076*                    |
| C6  | 0.3002 (3)  | 0.5429 (4)   | 0.4614 (2)   | 0.0480 (9)                |
| Н6  | 0.3501      | 0.5158       | 0.4269       | 0.058*                    |
| C7  | 0.2709 (3)  | 0.3845 (4)   | 0.5007 (2)   | 0.0470 (9)                |
| H7  | 0.2194      | 0.4120       | 0.5339       | 0.056*                    |
| C8  | 0.2161 (3)  | 0.2645 (4)   | 0.4365 (2)   | 0.0477 (9)                |
| C9  | 0.2742 (3)  | 0.1833 (5)   | 0.3891 (2)   | 0.0598 (11)               |
| H9  | 0.3489      | 0.1980       | 0.3986       | 0.072*                    |
|     |             |              |              |                           |

# supplementary materials

| C10 | 0.2239 (3) | 0.0810 (5) | 0.3282 (2) | 0.0630 (11) |
|-----|------------|------------|------------|-------------|
| H10 | 0.2642     | 0.0292     | 0.2961     | 0.076*      |
| C11 | 0.1146 (3) | 0.0558 (5) | 0.3149 (2) | 0.0566 (10) |
| C12 | 0.0553 (3) | 0.1319 (5) | 0.3614 (2) | 0.0636 (11) |
| H12 | -0.0192    | 0.1156     | 0.3519     | 0.076*      |
| C13 | 0.1063 (3) | 0.2331 (5) | 0.4227 (2) | 0.0598 (11) |
| H13 | 0.0658     | 0.2816     | 0.4557     | 0.072*      |
| C14 | 0.3719 (3) | 0.2214 (4) | 0.6170 (2) | 0.0466 (9)  |
| C15 | 0.2835 (3) | 0.1887 (5) | 0.6498 (2) | 0.0568 (10) |
| H15 | 0.2157     | 0.2295     | 0.6247     | 0.068*      |
| C16 | 0.2939 (3) | 0.0961 (5) | 0.7196 (2) | 0.0657 (11) |
| H16 | 0.2345     | 0.0783     | 0.7422     | 0.079*      |
| C17 | 0.3928 (4) | 0.0321 (5) | 0.7540 (2) | 0.0668 (12) |
| C18 | 0.4799 (3) | 0.0540 (5) | 0.7218 (3) | 0.0689 (12) |
| H18 | 0.5463     | 0.0074     | 0.7458     | 0.083*      |
| C19 | 0.4693 (3) | 0.1465 (5) | 0.6528 (2) | 0.0621 (11) |
| H19 | 0.5288     | 0.1591     | 0.6297     | 0.074*      |
|     |            |            |            |             |

# Atomic displacement parameters $(\text{\AA}^2)$

|               | $U^{11}$        | $U^{22}$   | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|---------------|-----------------|------------|-------------|--------------|-------------|--------------|
| Br1           | 0.0878 (4)      | 0.0778 (4) | 0.0732 (4)  | -0.0049 (3)  | 0.0003 (3)  | -0.0205 (2)  |
| F1            | 0.1045 (19)     | 0.124 (2)  | 0.0783 (18) | -0.0166 (17) | 0.0050 (15) | 0.0468 (17)  |
| N1            | 0.0448 (17)     | 0.063 (2)  | 0.0512 (18) | 0.0024 (16)  | 0.0108 (15) | 0.0142 (17)  |
| 01            | 0.0537 (17)     | 0.077 (2)  | 0.0808 (19) | -0.0162 (15) | 0.0184 (15) | -0.0109 (16) |
| C1            | 0.053 (2)       | 0.053 (2)  | 0.042 (2)   | 0.000 (2)    | 0.0104 (19) | 0.0009 (18)  |
| C2            | 0.070 (3)       | 0.062 (3)  | 0.058 (2)   | -0.009 (2)   | 0.020 (2)   | -0.015 (2)   |
| C3            | 0.061 (3)       | 0.062 (3)  | 0.102 (3)   | 0.005 (2)    | 0.028 (3)   | -0.008 (3)   |
| C4            | 0.054 (2)       | 0.062 (3)  | 0.085 (3)   | 0.006 (2)    | 0.003 (2)   | 0.006 (2)    |
| C5            | 0.073 (3)       | 0.056 (3)  | 0.051 (2)   | -0.007 (2)   | -0.003 (2)  | 0.002 (2)    |
| C6            | 0.052 (2)       | 0.046 (2)  | 0.048 (2)   | -0.0002 (18) | 0.0161 (18) | 0.0005 (18)  |
| C7            | 0.045 (2)       | 0.050 (2)  | 0.046 (2)   | 0.0038 (18)  | 0.0112 (18) | 0.0047 (18)  |
| C8            | 0.043 (2)       | 0.042 (2)  | 0.058 (2)   | 0.0014 (18)  | 0.0113 (19) | 0.0044 (18)  |
| C9            | 0.044 (2)       | 0.068 (3)  | 0.071 (3)   | -0.006 (2)   | 0.020 (2)   | -0.010 (2)   |
| C10           | 0.062 (3)       | 0.062 (3)  | 0.070 (3)   | -0.001 (2)   | 0.025 (2)   | -0.011 (2)   |
| C11           | 0.059 (3)       | 0.054 (3)  | 0.054 (2)   | 0.000 (2)    | 0.008 (2)   | 0.0022 (19)  |
| C12           | 0.040 (2)       | 0.069 (3)  | 0.079 (3)   | 0.002 (2)    | 0.008 (2)   | -0.008 (2)   |
| C13           | 0.047 (2)       | 0.064 (3)  | 0.071 (3)   | 0.004 (2)    | 0.018 (2)   | -0.011 (2)   |
| C14           | 0.046 (2)       | 0.045 (2)  | 0.049 (2)   | -0.0001 (18) | 0.0097 (19) | -0.0003 (18) |
| C15           | 0.053 (2)       | 0.066 (3)  | 0.052 (2)   | 0.006 (2)    | 0.013 (2)   | 0.002 (2)    |
| C16           | 0.069 (3)       | 0.077 (3)  | 0.055 (2)   | -0.005 (2)   | 0.023 (2)   | 0.005 (2)    |
| C17           | 0.086 (3)       | 0.062 (3)  | 0.046 (2)   | -0.010 (3)   | 0.001 (2)   | 0.011 (2)    |
| C18           | 0.056 (3)       | 0.074 (3)  | 0.072 (3)   | 0.001 (2)    | 0.006 (2)   | 0.024 (2)    |
| C19           | 0.050(2)        | 0.072 (3)  | 0.065 (3)   | 0.002 (2)    | 0.016 (2)   | 0.012 (2)    |
|               |                 |            |             |              |             |              |
| Geometric par | rameters (Å, °) |            |             |              |             |              |

| Br1—C11 | 1.898 (4) | С7—С8 | 1.519 (5) |
|---------|-----------|-------|-----------|
| F1—C17  | 1.371 (4) | С7—Н7 | 0.9800    |

| N1—C14     | 1.378 (4) | C8—C13      | 1.379 (5) |
|------------|-----------|-------------|-----------|
| N1—C7      | 1.444 (4) | C8—C9       | 1.380 (5) |
| N1—H1      | 0.8111    | C9—C10      | 1.375 (5) |
| 01—C1      | 1.218 (4) | С9—Н9       | 0.9300    |
| C1—C2      | 1.501 (5) | C10-C11     | 1.366 (5) |
| C1—C6      | 1.509 (5) | C10—H10     | 0.9300    |
| C2—C3      | 1.529 (5) | C11—C12     | 1.359 (5) |
| C2—H2A     | 0.9700    | C12—C13     | 1.377 (5) |
| C2—H2B     | 0.9700    | C12—H12     | 0.9300    |
| C3—C4      | 1.517 (5) | C13—H13     | 0.9300    |
| С3—НЗА     | 0.9700    | C14—C15     | 1.385 (5) |
| С3—Н3В     | 0.9700    | C14—C19     | 1.389 (5) |
| C4—C5      | 1.499 (5) | C15—C16     | 1.391 (5) |
| C4—H4A     | 0.9700    | C15—H15     | 0.9300    |
| C4—H4B     | 0.9700    | C16—C17     | 1.363 (6) |
| C5—C6      | 1.548 (5) | С16—Н16     | 0.9300    |
| С5—Н5А     | 0.9700    | C17—C18     | 1.349 (6) |
| С5—Н5В     | 0.9700    | C18—C19     | 1.380 (5) |
| C6—C7      | 1.547 (5) | C18—H18     | 0.9300    |
| С6—Н6      | 0.9800    | С19—Н19     | 0.9300    |
| C14—N1—C7  | 124.0 (3) | N1—C7—H7    | 108.0     |
| C14—N1—H1  | 118.7     | С8—С7—Н7    | 108.0     |
| C7—N1—H1   | 114.1     | С6—С7—Н7    | 108.0     |
| O1—C1—C2   | 121.2 (3) | C13—C8—C9   | 117.3 (3) |
| O1—C1—C6   | 122.5 (3) | C13—C8—C7   | 121.5 (3) |
| C2—C1—C6   | 116.0 (3) | C9—C8—C7    | 121.2 (3) |
| C1—C2—C3   | 109.5 (3) | C10—C9—C8   | 121.3 (3) |
| C1—C2—H2A  | 109.8     | С10—С9—Н9   | 119.3     |
| C3—C2—H2A  | 109.8     | С8—С9—Н9    | 119.3     |
| C1—C2—H2B  | 109.8     | С11—С10—С9  | 119.8 (4) |
| С3—С2—Н2В  | 109.8     | С11—С10—Н10 | 120.1     |
| H2A—C2—H2B | 108.2     | C9—C10—H10  | 120.1     |
| C4—C3—C2   | 111.3 (3) | C12—C11—C10 | 120.3 (4) |
| С4—С3—НЗА  | 109.4     | C12-C11-Br1 | 119.6 (3) |
| С2—С3—НЗА  | 109.4     | C10-C11-Br1 | 120.0 (3) |
| C4—C3—H3B  | 109.4     | C11—C12—C13 | 119.6 (4) |
| С2—С3—Н3В  | 109.4     | C11—C12—H12 | 120.2     |
| НЗА—СЗ—НЗВ | 108.0     | C13—C12—H12 | 120.2     |
| C5—C4—C3   | 111.2 (3) | C12—C13—C8  | 121.6 (4) |
| С5—С4—Н4А  | 109.4     | C12—C13—H13 | 119.2     |
| C3—C4—H4A  | 109.4     | C8—C13—H13  | 119.2     |
| C5—C4—H4B  | 109.4     | N1—C14—C15  | 124.0 (3) |
| C3—C4—H4B  | 109.4     | N1—C14—C19  | 118.9 (3) |
| H4A—C4—H4B | 108.0     | C15—C14—C19 | 117.0 (3) |
| C4—C5—C6   | 112.9 (3) | C14—C15—C16 | 121.4 (4) |
| C4—C5—H5A  | 109.0     | C14—C15—H15 | 119.3     |
| С6—С5—Н5А  | 109.0     | C16—C15—H15 | 119.3     |
| C4—C5—H5B  | 109.0     | C17—C16—C15 | 118.7 (4) |
| C6—C5—H5B  | 109.0     | C17—C16—H16 | 120.7     |

# supplementary materials

| Н5А—С5—Н5В    | 107.8      | С15—С16—Н16     | 120.7      |
|---------------|------------|-----------------|------------|
| C1—C6—C7      | 110.1 (3)  | C18—C17—C16     | 121.9 (4)  |
| C1—C6—C5      | 107.8 (3)  | C18—C17—F1      | 119.1 (4)  |
| C7—C6—C5      | 113.5 (3)  | C16-C17-F1      | 119.0 (4)  |
| C1—C6—H6      | 108.4      | C17—C18—C19     | 119.2 (4)  |
| С7—С6—Н6      | 108.4      | C17—C18—H18     | 120.4      |
| С5—С6—Н6      | 108.4      | C19—C18—H18     | 120.4      |
| N1—C7—C8      | 115.0 (3)  | C18—C19—C14     | 121.6 (4)  |
| N1—C7—C6      | 106.9 (3)  | С18—С19—Н19     | 119.2      |
| C8—C7—C6      | 110.7 (3)  | C14—C19—H19     | 119.2      |
| O1—C1—C2—C3   | 119.2 (4)  | C7—C8—C9—C10    | -176.5 (3) |
| C6—C1—C2—C3   | -55.2 (4)  | C8—C9—C10—C11   | -1.5 (6)   |
| C1—C2—C3—C4   | 54.1 (4)   | C9-C10-C11-C12  | 0.3 (6)    |
| C2—C3—C4—C5   | -56.3 (4)  | C9—C10—C11—Br1  | 178.9 (3)  |
| C3—C4—C5—C6   | 56.5 (4)   | C10-C11-C12-C13 | -0.8 (6)   |
| O1-C1-C6-C7   | 115.0 (4)  | Br1-C11-C12-C13 | -179.4 (3) |
| C2-C1-C6-C7   | -70.6 (4)  | C11—C12—C13—C8  | 2.4 (6)    |
| O1—C1—C6—C5   | -120.7 (4) | C9—C8—C13—C12   | -3.5 (6)   |
| C2-C1-C6-C5   | 53.7 (4)   | C7—C8—C13—C12   | 176.1 (3)  |
| C4—C5—C6—C1   | -53.2 (4)  | C7—N1—C14—C15   | -16.0 (5)  |
| C4—C5—C6—C7   | 69.1 (4)   | C7—N1—C14—C19   | 166.3 (3)  |
| C14—N1—C7—C8  | -78.0 (4)  | N1-C14-C15-C16  | -172.5 (3) |
| C14—N1—C7—C6  | 158.8 (3)  | C19—C14—C15—C16 | 5.3 (6)    |
| C1C6C7N1      | -52.9 (4)  | C14-C15-C16-C17 | -2.4 (6)   |
| C5—C6—C7—N1   | -173.9 (3) | C15-C16-C17-C18 | -1.0 (6)   |
| C1—C6—C7—C8   | -178.8 (3) | C15-C16-C17-F1  | 177.7 (3)  |
| C5—C6—C7—C8   | 60.2 (4)   | C16—C17—C18—C19 | 1.2 (7)    |
| N1-C7-C8-C13  | 132.0 (4)  | F1-C17-C18-C19  | -177.4 (4) |
| C6—C7—C8—C13  | -106.8 (4) | C17—C18—C19—C14 | 1.9 (7)    |
| N1—C7—C8—C9   | -48.4 (5)  | N1-C14-C19-C18  | 172.9 (4)  |
| C6—C7—C8—C9   | 72.8 (4)   | C15-C14-C19-C18 | -5.0 (6)   |
| C13—C8—C9—C10 | 3.0 (6)    |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                  | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------------------|-------------|-------|--------------|---------|
| N1—H1···O1 <sup>i</sup>                  | 0.81        | 2.19  | 2.978 (4)    | 166     |
| Symmetry codes: (i) $-x+1, -y+1, -z+1$ . |             |       |              |         |



